2 results for Alloway, Brent

  • Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project)

    Alloway, Brent; Lowe, DJ; Barrell, DJ; Newnham, RM; Almond, PC; Augustinus, Paul; Bertler, NA; Carter, L; Litchfield, NJ; McGlone, MS; Shulmeister, J; Vandergoes, MJ; Williams, PW (2007)

    Journal article
    The University of Auckland Library

    It is widely recognised that the acquisition of high-resolution palaeoclimate records from southern mid-latitude sites is essential for establishing a coherent picture of inter-hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ-INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ-INTIMATE has been the identification of a series of well-dated, high-resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High-resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97-2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice-core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras.

    View record details
  • Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 yr ago as a framework for NZ-INTIMATE.

    Lowe, DJ; Shane, Philip; Alloway, Brent; Newnham, R (2008)

    Journal article
    The University of Auckland Library

    The role of tephras in the NZ-INTIMATE project is a critical one because most high-resolution palaeoclimatic records are linked and dated by one or more tephra layers. In this review, first we document eruptive, distributional, and compositional fingerprinting data, both mineralogical and geochemical, for 22 key marker tephras erupted since 30,000 years ago to facilitate their identification and correlation. We include new glass compositional data. The selected marker tephras comprise 10 from Taupo and nine from Okataina volcanoes (rhyolitic), one from Tuhua volcano (peralkaline rhyolitic), and one each from Tongariro and Egmont volcanoes (andesitic). Second, we use four approaches to develop 2σ-age models for the tephras (youngest to oldest): (1) calendar ages for Kaharoa and Taupo/Y were obtained by wiggle-matching log-derived tree-ring sequences dated by 14C; (2) Whakaipo/V was dated using an age–depth model from peat; (3) 14 tephras in the montane Kaipo peat sequence (Waimihia/S, Unit K, Whakatane, Tuhua, Mamaku, Rotoma, Opepe/E, Poronui/C, Karapiti/B, Okupata, Konini, Waiohau, Rotorua, Rerewhakaaitu) were dated by simultaneously wiggle-matching stratigraphic position and 51 independent 14C-age points against IntCal04 using Bayesian probability methods via both OxCal and Bpeat; and (4) the five oldest tephras, erupted before ca 18,000 cal. yr BP, were dated by calibrating limited numbers of 14C ages using IntCal04 (Okareka) or comparison curves of the expanded Cariaco Basin sequence (Te Rere, Kawakawa/Oruanui, Poihipi, Okaia). Kawakawa/Oruanui tephra, the most widely distributed marker tephra, was erupted probably ca 27,097±957 cal. yr BP. Potential dating approaches for the older tephras include their identification in Antarctic ice cores (if present) or annually laminated sediments for which robust calendar-age models have been constructed, high-precision AMS 14C dating on appropriate material from environmentally stable sites, systematic luminescence dating, or new radiometric techniques (e.g. U–Th/He) if suitable minerals are available and errors markedly reduced. Further application of Bayesian age-modelling to stratigraphic sequences of 14C ages, possibly augmented with luminescence ages, may help refine age models for pre-Holocene tephras with the largest errors. Finally, we discuss the critical role these marker tephras play in the ongoing construction of an event stratigraphy for the New Zealand region, which is a key objective of Australasian and Southern Hemisphere INTIMATE projects.

    View record details