3 results for Paramei, Galina V.

  • A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness

    Bimler, David L.; Paramei, Galina V.; Izmailov, Ciingis A.

    Journal article
    Massey University

    The surface-mode property of “blackness” is induced by simultaneous contrast with an adjacent, more luminant surround. As numerous studies have shown, the degree of blackness induced within an achromatic test field is a function of the relative luminance of the adjacent chromatic inducing field, but not of its hue. But in the converse case of chromatic test fields, susceptibility to blackening has been reported to vary with wavelength. The present study investigates this possibility, that some wavelengths are more susceptible. We also questioned whether “white” and “black” sensory components function as opposites in blackness appearance. We recorded the appearance of a central monochromatic test field of constant luminance (10 cd/m2), with wavelength ranging across the visible spectrum, while a broadband white annulus was set to six luminance levels ranging across three log steps. Three color-normal observers followed a color-naming technique. All six opponent-hue names and their combinations were response options; blackness and whiteness in the test field could therefore be reported independently. Of primary interest were the achromatic responses. When represented within a multidimensional space, these revealed the “white-to-black” dimension but in addition a quality ~dimension! of “desaturation.” Compared against chromatic properties of the test field, the results provide evidence that blackness is a function of inducing field brightness (not luminance). This result is in accord with observations made by Shinomori et al. (1997) using a different procedure. We conclude that blackness induction occurs at a stage of visual processing subsequent to the origin of the brightness signal from a combination of opponent-process channels.

    View record details
  • Color space distortions in patients with type 2 diabetes mellitus

    Feitosa-Santana, Claudia; Oiwa, Nestor N.; Paramei, Galina V.; Bimler, David L.; Costa, Marcelo F.; Lago, Marcos; Nishi, Mauro; Ventura, Dora F.

    Journal article
    Massey University

    Color vision impairment was examined in patients with type 2 diabetes mellitus (DM2) without retinopathy. We assessed the type and degree of distortions of individual color spaces. DM2 patients (n = 32), and age-matched controls (n = 20)were tested using the Farnsworth D-15 and the Lanthony D-15d tests. In addition, subsets of caps from both tests were employed in a triadic procedure (Bimler & Kirkland, 2004). Matrices of inter-cap subjective dissimilarities were estimated from each subject’s “odd-one-out” choices, and processed using non-metric multidimensional scaling. Two-dimensional color spaces, individual and group (DM2 patients; controls), were reconstructed, with the axes interpreted as the R0G and B0Y perceptual opponent systems. Compared to controls, patient results were not significant for the D-15 and D-15d. In contrast, in the triadic procedure the residual distances were significantly different compared to controls: right eye, P 0.021, and left eye, P 0.022. Color space configurations for the DM2 patients were compressed along the B0Y and R0G dimensions. The present findings agree with earlier studies demonstrating diffuse losses in early stages of DM2. The proposed method of testing uses color spaces to represent discrimination and provides more differentiated quantitative diagnosis, which may be interpreted as the perceptual color system affected. In addition, it enables the detection of very mild color vision impairment that is not captured by the D-15d test. Along with fundoscopy, individual color spaces may serve for monitoring early functional changes and thereby to support a treatment strategy.

    View record details
  • Luminance-dependent hue shift in protanopes

    Bimler, David L.; Paramei, Galina V.

    Journal article
    Massey University

    For normal trichromats, the hue of a light can change as its luminance varies. This Bezold-Brücke (B-B) hue shift is commonly attributed to nonlinearity in the blue–yellow opponent system. In the present study, we questioned whether protanopes experience analogous changes. Two protanopes (Ps) viewed spectral lights at six luminance levels across three log steps. Two normal trichromats (NTs) were tested for comparison. A variant of the color-naming method was used, with an additional “white” term. To overcome the difficulty of Ps’ idiosyncratic color naming, we converted color-naming functions into individual color spaces, by way of interstimulus similarities and multidimensional scaling (MDS). The color spaces describe each stimulus in terms of spatial coordinates, so that hue shifts are measured geometrically, as displacements along specific dimensions. For the NTs, a B-B shift derived through MDS agreed well with values obtained directly by matching color-naming functions. A change in color appearance was also observed for the Ps, distinct from that in perceived brightness. This change was about twice as large as the B-B shift for NTs and combined what the latter would distinguish as hue and saturation shifts. The protanopic analogue of the B-B shift indicates that the blue–yellow nonlinearity persists in the absence of a red–green signal. In addition, at mesopic levels (# 38 td), the Ps’ MDS solution was two dimensional at longer wavelengths, suggesting rod input. Conversely, at higher luminance levels (76 td–760 td) the MDS solution was essentially one dimensional, placing a lower limit on S-cone input at longer wavelengths.

    View record details