2 results for Perrone, Gian David

  • Bigraph Metaprogramming for Distributed Computation

    Perrone, Gian David (2010)

    Masters thesis
    University of Waikato

    Ubiquitous computing is a paradigm that emphasises integration of computing activities into the fabric of everyday life. With the increasing availability of small, cheap computing devices, the ubiquitous computing model seems more and more likely to supplant desktop computing as the dominant paradigm. Similarly, the presence of high-speed network connectivity between vast numbers of computers has already made distributed computing the preferred paradigm for many application domains. Unfortunately, traditional approaches to software development are not necessarily well-suited to developing software in a post-desktop world. We present an extension to the bigraphical reactive systems formalism that enables us to construct a programming language based upon it. We believe that this programming language provides programmers with an environment better suited to the challenges that arise when creating software within a distributed or ubiquitous computing paradigm. We detail our modification to the theory of bigraphical reactive systems that enables metaprogramming. Finally, we provide a description of our prototype implementation of a programming language that enables metaprogramming of bigraphical reactive systems.

    View record details
  • Automatic Parallelisation of Web Applications

    Perrone, Gian David; Streader, David (2008)

    Conference item
    University of Waikato

    Small web applications have a tendency to get bigger. Yet despite the current popularity of web applications, little has been done to help programmers to leverage the performance and scalability benefits that can result from the introduction of parallelism into a program. Accordingly, we present a technique for the automatic parallelisation of whole web applications, including persistent data storage mechanisms. We detail our prototype implementation of this technique, Ceth and finally, we establish the soundness of the process by which we extract coarse-grained parallelism from programs.

    View record details